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Abstract

The bending and free vibration of a simply-supported, cross-ply laminated cylindrical panel with weak interfaces are
investigated in this study. The problem is solved using three-dimensional state-space approach coupled with the layer-
wise method, which turns the state equation with variable coefficients into one with constant coefficients. The weak
interfaces are modeled as spring layers. Their effects on the integrity of the laminate panel are accounted for by
integrating the so-called interfacial transfer matrices into the global transfer matrix. The cylindrical bending of the
panel is also considered, and an exact static state-space solution is derived. Comprehensive numerical results are
presented and some practical issues of importance to engineering applications are discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Problems of composites with weak or imperfect bonding interfaces have been subjected to intense re-
search in the recent decades (Aboudi, 1987; Hashin, 1990, 1991; Chaboche et al., 2001). In the structural
level, the interface between two adjacent layers in laminated plates or shells may be weakened or even
broken due to external loading or aging of interface bonding. On the other hand, weak interface is occa-
sionally artificially introduced into a laminate to tailor its mechanical properties (Clegg, 1992; Kuo and
Kriven, 1996), because it has been found that laminates with weak interfaces have high fracture toughness
(Zeng and Jiang, 2001). In general, these weak and damaged interfaces (including delamination and in-
terlayer slip, as limiting cases) degrade the integrity of a laminate structure. For example, they may seri-
ously reduce the rigidity of a laminated panel (Barbero and Reddy, 1991). They may also cause significant
shift of natural frequencies from those of a perfectly bonded laminated panel (Cheng et al., 2000). For the
purpose of better evaluation or health diagnosis of laminated structures in service, it is highly desirable to
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develop analytical methods that can accurately account for effects of weak interfaces in a laminated
structure under static or dynamic loadings. Previous work reported in literature has been largely focused on
developing or using two-dimensional (2D) laminate plate or shell theories. Barbero and Reddy (1991)
suggested a layer-wise laminated plate theory, in which the delaminations of layers were modeled by jump
discontinuity conditions at the interfaces. Tenek et al. (1993) investigated the effect of delamination on free
vibration of composite plates by the three-dimensional (3D) finite element method (FEM). Point and Sacco
(1995) developed a delamination model for composite plates by adopting an adhesion law to simulate the
behavior of interface. Barbero et al. (1995) proposed an FEM contact/friction analysis of composite joints,
in which an orthotropic Coulomb friction law was employed. Di Sciuva (1997) derived the controlling
equations with the consideration of geometric non-linearity for laminated plates with interlaminar slips.

Linear spring-layer model has been widely used to model the load transferring at interfaces between
constituent components or adjacent layers (Aboudi, 1987; Hashin, 1990, 1991). In the structural level, Liu
et al. (1994) developed a 2D laminate theory for delaminated composite plates. The general linear model of
interfaces employed by Liu et al. (1994) actually is identical to the linear spring-layer model mentioned
above. The linear interfacial model is very convenient to use, although it is only adequate for modeling the
initial response of delaminated structures. A lot of work based on this linear spring-layer model has been
reported ever since (Cheng et al., 1996a,b; Williams and Addessio, 1997; Cheng et al., 2000; Librescu and
Schmidt, 2001; Soldatos and Shu, 2001; and the references cited therein). The model is summarized in
Eq. (1) as below for a laminated cylindrical panel shown in Fig. 1:

a£k+1) _ O_ﬁk) _ [urkﬂ) _ u£k>]/R£k)’ T£g+1) _ ri’(‘,) _ [uff‘*” _ ug’“)]/Rf)k), 0
W = ) = Y RO, atr=n,

where o), 7:5? and () are stresses in the kth layer, and R"™ (i = r,0,z) are the compliance constants of the
interface between the kth layer and (k + 1)th layer. It is clear that when Rl(k) — 0, the displacements will be
continuous across the interface, implying a perfect bonding, while ng) — oo indicates that the kth layer and
(k + 1)th layer are completely separated from each other. If R¥ — 0 while Rg‘) and R have non-zero finite
values, an interlaminar shear slip is admitted at the kth interface.

While they are widely used in laminated panel analyses because of their simplicity and cost effectiveness,
the applicability and validity of these simplified or reduced-order 2D plate/shell theories must be carefully
examined by comparisons either against extensive numerical modeling or 3D exact elasticity solutions. In
this sense, simple, analytical 3D elastic solutions are of unique importance because they can be used as
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Fig. 1. Geometry of a laminated cylindrical panel and cylindrical coordinates.
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simple, inexpensive yard-sticks to appraise any 2D plate/shell theories. There are a lot of exact 3D solutions
available in literature but most of them work only for perfectly bonded laminated plates and shells (Pagano,
1969; Srinivas and Rao, 1970; Ren, 1987; Varadan and Bhaskar, 1991; Jing and Tzeng, 1995). Little has
been done on laminates with interlaminar bonding imperfections. Williams and Addessio (1997) extended
Pagano’s solution to a laminated plate in cylindrical bending with delaminations by using linear interfacial
constitutive relations (i.e. the spring-layer model). Theoretically all the above-mentioned exact solutions for
perfectly bonded laminates can be extended to account for the effects of weak interfaces using the linear
spring-layer model. However, conventional 3D elasticity solutions usually suffer from high computational
cost when dealing with a laminate made up of a large number of plies (Noor and Burton, 1990).

State-space approach (or initial function method) has been developed for a long time (Vlasov and
Leontev, 1966; Bahar, 1975). This method is very effective in analysis of layered elastic systems because (1)
the boundary and continuity conditions are directly expressed in terms of state variables, which can be
solved from the governing state equation; and (2) the final solving equations remain the same small number
no matter how many layers are considered. It has become an important elasticity method in modern
structural analysis (Fan and Ye, 1990; Fan and Zhang, 1992a.,b; Ye and Soldatos, 1994; Xu and Noor,
1996; Chen and Ding, 2001; Tarn, 2002). Note that even within the simplified theories, the state-space
solution also exhibits certain advantage (Khdeir and Reddy, 1997). Chen et al. (2003) recently derived a
state-space solution for a simply-supported laminated rectangular plate featuring interlaminar bonding
imperfections.

In this paper, we use the state-space approach coupled with the general linear spring-layer model to
analyze the 3D bending and free vibration of simply supported, cross-ply laminated cylindrical panels with
weak interfaces. Compared to the analysis for perfect laminated cylindrical panels (Fan and Zhang, 1992a),
only the interfacial transfer matrices of the spring-layers representing the weak interfaces need to be
integrated into the global transfer matrix (Chen et al., 2003). The state equation for laminated cylindrical
panel in cylindrical bending is also presented. In particular, an exact state-space solution is given in
Appendix B for the static bending problem by using a variable substitution technology. Some numerical
examples are considered and results of importance to engineering practices are discussed.

2. State-space formulations

In this section, we give a brief review of the state-space formulations presented in Fan and Zhang
(1992a) for the reader’s convenience, but with a special non-dimensionalization. Considering an N-layered
cross-ply cylindrical panel, as shown in Fig. 1, the constitutive relations are (Whitney, 1987; Jing and
Tzeng, 1995)
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where ¢;; are elastic constants, ¢; and 1; are normal and shear stress components, respectively. The fol-
lowing state equation can be easily derived from Eq. (2) and the equations of motion (Fan and Zhang,
1992a)

)

3y [Urs U0, Uz, O T, T2 = N[, g, 1z, 04, 10, 7] (3)
where the matrix N(r) is given in Appendix A. Note that the derivation of Eq. (3) is fundamental and
straightforward, and the reader is referred to any previous paper on state-space approach for a very similar

procedure.
An analytical solution can be obtained for the following simply-supported boundary conditions, i.e.

o,=up=u,=0, atz=0,L,

op=u.=u.=0, at0=0,a. @)
In fact, we can assume
u, roit, (&) sin(mmnn) sin(nnf)
Uy rottp(&) cos(mmn) sin(nn()
" roui, (&) sin(mnn) cos(nnl) )
o [~ cf‘?&,(f) sin(mmny) sin(nn) exp(ior), )
Tp0 c44 %,0(&) cos(mmy) sin(nnl)
Trz c44 v:,z(f) sin(mnn) cos(nnf)

where & =r/ry, § = 0/0, and { = z/L are dimensionless coordinates, m and » are the half-wave numbers in
the circumferential and axial directions, respectively, c44> represents the elastic constant of the first layer (the
bottom layer), and w is the circular frequency. Eq. (5) is the solution to the bending problem if w = 0;
otherwise it is a solution (eigen-mode) for free vibration of the panel. It can be readily shown that Eq. (5)
satisfies the simply supported conditions of Eq. (4) automatically. Substituting Eq. (5) into Eq. (3) yields

VO = AV, ©)

where V(&) = [ﬁ,.(é),ﬁg(é),ﬁz(é),6,(5),%,.9(6)7%,2(5)]T, and the non-dimensional coefficient matrix A(¢) is
also listed in Appendix A. The solution to Eq. (6) is not straightforward because A(¢) varies with ¢. Fan
and Zhang (1992a,b) suggested a layer-wise method (LWM) to obtain the approximate analytical solution.
According to this method, the kth layer in the panel is further equally divided into n; sub-layers, each with a
very small thickness so that A(¢) can be taken as a constant. Under this condition, the solution in the /th
sub-layer in the kth layer can be obtained per matrix theory (Bellman, 1970) as

V(&) = explA(&iim) (& = E10)]V(Eio) (Grio<EL<Eu, 1=1,2,...,m; k=1,2,...,N), (7)

where &0, &1 and &, are the dimensionless radial coordinates at the lower, upper and intermediate
surfaces of the /th sub-layer respectively, i.e.

fk,/,o = (l - 1)(§k - ék—l)/nkv fk,m = l(fk - ék—l)/”lm
Eeam = (Eero +&11)/2,

in which & =1, & =ri/ro = (ro + Zj;l h;)/ro, and hy is the thickness of the kth layer. Setting & = &, in
Eq. (7) yields

V(ék‘/‘l) = Tk,lv(fk.,l‘())v (9)

(8)
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where Ty, = exp[A(&;1.,) (& — & 1) /ny] is the transfer matrix of the /th sub-layer in the kth layer. Taking
account of the continuity conditions at the fictitious interfaces, i.e.

V(o) = V(&) (I=12,....m—1), (10)
we can easily derive from Eq. (9)
V(lk) — Mkv(()k)7 (11)

where V(lk) and Vék) are the state vectors at the upper and lower surfaces, respectively, of the kth layer, and

M, = H}:nk Ty, is the transfer matrix of that layer. Similarly, we have for the (k + 1)th layer
V<1k+1> _ Mk+1V(()k+l)- (12)

A short discussion is presented here regarding the property of the matrix A(¢). As we can see from Eq.
(A.4), all elements are functions of &°, ¢! and &2 For a cylindrical panel considered in this paper, we have
& > 1, i.e. the matrix A(¢) is regular without any singular point. Thus, the variation of matrix A(¢) with ¢ is
rather gentle. This implies that by using the LWM, a relatively small number of sub-layers are necessary to
acquire high accurate results. It will be further discussed through numerical example.

3. Imperfect bonding conditions and treatment

The boundary conditions at a weak interface have been given in Eq. (1). It can be re-expressed as follows
by applying Eq. (5)

VD — pvie, (13)

where P, can be termed as the interfacial transfer matrix defined as

100 ROV 0 0

010 0 RY o0
p_|001 0 0 RY (14)
000 1 0 0

000 0 1 0

000 0 0 1

Here I_?l(k) = CE,QR§"> /ro (i =r,0,z) are dimensionless compliance coefficients of the interfaces. For a perfect

interface, R,(k) =0 and P, = I (I being the identity matrix).
From Eqgs. (11)—(13), a relation between state vectors at the upper surface of the (k + 1)th layer and the
lower surface of the kth layer can be established

vVED — M PV V. (15)

Continuing the above procedure, the relation between state vectors at the top and bottom surfaces of the
laminated cylindrical panel is finally obtained

vV =svil, (16)
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where S = <sz.:N MJ-P,-_I)MI is the global transfer matrix for a laminated cylindrical panel with weak
interfaces. In the case of a"perfectly bonded laminate all P; become unit. It follows that S = H}:N M;, which
is the same as that in Fan and Zhang (1992a).

4. Boundary conditions and solutions
4.1. Bending under surface pressure
First, consider the bending problem (w = 0) of the panel subjected to generally distributed normal loads

p(0,z) and ¢(0,z) applied on the bottom and top surfaces, respectively. The loads can be expanded in terms
of double sine functions as follows:

3

p(0,z) = cg Z iamn sin(mmn) sin(nn(),

m;l n;l (17)
q(6,z) = 0214 men sin(mmn) sin(nn(),
m=1 n=
where [y, bum] = [4/c})] fo fo q(n, )] sin(mnn) sin(nn{) dnd{. For an arbitrary couple of (m, n), the
surface boundary conditions are
6—r(€0) = Qmn, 6—r(€N) = bmna %rH(éo) = %rz(éo) = %rﬁ(éN) = frz(éN) =0. (18)
From Egs. (16) and (18), we can calculate the unknown state variables at the bottom surface by
Su Sp Su u,(&o) b — SaaGin
Ss1 Ssp Ss3 | q #(So) ¢ = —S54mn ) (19)
Se1 Sez Sesd | u:(&o) —S64mn

where §;; are elements of the matrix S. The state vector for an arbitrary value of ¢ are then determined by

V(E) =TiOVY (&<,
V(&) =T, OPM VY (6,<E<E),

2
V(&) = n(&)( 11 M,P“)Mlvg” (G <ESE; k=3,4,...N).
J

=k—1

(20)

The three induced variables are then calculated from the state variables by Eq. (A.3).

It is noted here that for a cross-ply laminated cylindrical panel with L — oo, the cylindrical bending
problem arises (Ren, 1987). In this case, we have only two non-zero displacements u, and uy, and both are
independent of the coordinate z. The corresponding state equation can be obtained as

1 121 0
uy r r 00 C44 up

_:ml2 _el 0 L
0 u, c33 r 00 c33 €33 U,

P =l 2 _ke _ka  _2  _m;l13a : (21)
r 1 T P2 2 o0% r2 30 r ¢33 r 00 Tro
(% k@ k3 _130 @3 1 1 O
r2 30 p '\,2 r 00 €33 r

The proceeding analysis is then similar and omitted here for brevity. However, an exact static solution can be
obtained if we rewrite Eq. (21) and employ the variable substitution technique. This is given in Appendix B.
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The solution can serve as a yard-stick to examine the convergence behavior of the LWM suggested by Fan
and Zhang (1992a,b).

4.2. Free vibration

If the free vibration problem is considered, the right-hand term in Eq. (19) vanishes because of the
traction-free conditions. In this case, the following frequency equation is obtained

Ss Sy Si
Ss1 S5 Ss3| = 0. (22)
Se1 Se2  Se3

After the frequency w is solved from the above equation, the vibrational modes of displacements at the
bottom surface can be determined from the homogeneous equation of Eq. (19).

5. Numerical examples
For clarity, the following rules are applied in the discussion of this section:

(a) The notation system in Whitney (1987) is adopted to denote the layer stacking sequence from the top to
bottom. Each layer involved in the N-layer laminated cylindrical panel is considered to have identical
thickness (#/N) and density ratio.

(b) The fiber orientation (0° or 90°) is denoted by an angle measured from the z-axis to the fiber direction.

(c) R® =0 at each interface to avoid the unphysical material penetration (Cheng et al., 1996a,b). It is
noted that, under this condition although the radial displacement u, is continuous across any weak
interface, tangential sliding is allowed. Furthermore, we assume that the weakness of any particular
interface is uniform and can be expressed as a non-dimensional compliance parameter,
R® = ErRY /h = ExR® /h. However, weakness of different interfaces can be different.

(d) The following material constants are employed in all numerical examples:

EL/Er =25, Gur/Er =05, Grr/Er =02, pg = ppp =025, (23)

where E is the Young’s modulus, G the shear modulus, u the Poisson’s ratio and subscripts L and T’
indicate, respectively, directions parallel and perpendicular to the fibers. The transformation from the
above engineering constants to the elastic stiffness constants ¢;; can be found in Jones (1975).

To check the correctness of the program written by Mathematica, the numerical examples in Fan and
Zhang (1992a) for perfectly bonded, laminated cylindrical panel are revisited and identical results are
obtained. In Fan and Zhang (1992a), the convergence behavior of the LWM was studied through com-
parison of results for different sub-layer numbers. Here an example is further given by considering the
cylindrical bending of a perfect cylindrical panel, of which the exact elasticity solution is available (Ren,
1987). An exact solution based on 3D state-space formulation is also given in Appendix B. A normal
sinusoidal load ¢ = ¢ sin(znn) is assumed to act on the top surface. Comparison is listed in Table 1, where
the non-dimensional quantities are defined as

rm  10Eq 1 1 1

S=— — 5 aa Urs = 9z = o ) = oo, 24
= w qth“u o] qOSZG 03 qoSzag 03 qoSre (24)

with r, = (ry + r9)/2 being the mean radius of the panel. It can be seen that the exact state-space solution
agrees well with Ren’s solution (1987) and the LWM has an excellent convergence characteristic. In fact, the



2436 W.Q. Chen et al. | International Journal of Solids and Structures 41 (2004) 2429-2446

Table 1
Verification of LWM: A three-ply ([90/0/90°]) perfect cylindrical panel in cylindrical bending subjected to sinusoidal load g = ¢ sin(7r)
at the top surface (o« = n/3)

Quantity S Ren (1987) State-space approach
Exact LWM, 30° LWM, 20 LWM, 10

W(rm, §) 2 1.436 1.43574 1.43576 1.43579 1.43592

4 0.457 0.458150 0.458152 0.458155 0.458168

10 0.144 0.143993 0.143993 0.143994 0.143994
—0a1(ro, %) 2 0.0347 0.0346692 0.0346730 0.0346778 0.0347026

4 0.0177 0.0177140 0.0177144 0.0177149 0.0177176

10 0.0100 0.00994881 0.00994885 0.00994890 0.00994916
a1(rv, %) 2 0.0871 0.0871310 0.0871302 0.0871292 0.0871240

4 0.0293 0.0292954 0.0292953 0.0292951 0.0292942

10 0.0115 0.0114721 0.0114721 0.0114720 0.0114719
—05(r0, %) 2 3.467 3.46692 3.46730 3.46778 3.47026

4 1.772 1.77140 1.77144 1.77149 1.77176

10 0.995 0.994881 0.994885 0.994890 0.994916
ay(rv, %) 2 2.463 2.46310 2.46302 2.46292 2.46240

4 1.367 1.36704 1.36703 1.36701 1.36692

10 0.897 0.897209 0.897207 0.897204 0.897190
03(rm, 0) 2 0.394 0.393518 0.393523 0.393528 0.393556

4 0.476 0.475725 0.475727 0.475728 0.475736

10 0.525 0.525113 0.525113 0.525114 0.525115

“LWM, [ denotes that each separate layer in the laminated panel is divided into / sub-layers when LWM is employed.

analysis based on LWM can give a result of arbitrary precision, because when the number of sub-layers
increases, the approximate laminate model will be more and more close to the original laminated structure.
In the following calculations, when LWM is employed, we always assume that each layer in the laminated
cylindrical panel is divided into 30 equal sub-layers, for which the results are highly accurate as shown in
Table 1.

As mentioned in the last section, when the cylindrical panel is long enough along the z-axis, it can be seen
as in a state of cylindrical bending for which u, = 0 and all physical variables are independent of z. Table 2
gives the results of a three-ply perfect laminated cylindrical panel with different length-to-thickness ratios.

Comparing Table 2 with Table 1, one can see that when L/h increases, the results converge constantly to
those for cylindrical bending. It is noted that for deflection calculation, a panel can be taken as being in a
state of cylindrical bending even when L/k is as small as 4S. The relative error of this handling, when
compared to the exact solution in Table 1, is smaller than 4%. This conclusion is consistent with that
obtained for a laminated rectangular plate by Whitney (1987). However, the stress component o, for
L/h =4S, especially at the top surface, is quite different from that given by the exact cylindrical bending.
Thus, in practice, the assumption of cylindrical bending should be carefully used for the calculation of
stresses. We also note that the deflection of the panel obtained under the assumption of cylindrical bending
is the upper limit, which results from the fact that in the state of cylindrical bending, the constraints at the
two edges z = 0, L are released, i.e. the rigidity of the panel is reduced.

Table 3 compares the results of our method with those of the extended third-order zigzag shell theory
(Cheng et al., 2000) for a three-ply ([90/0/90°]) laminated cylindrical panel subjected to sinusoidal load
p = —posin(nn)(sinn{) at the bottom surface. It is assumed that the two interfaces are identical, i.e.
R = R = R. For the sake of comparison, the following non-dimensional quantities (Cheng et al., 2000)
are employed in Table 3:
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Validation of cylindrical bending assumption for a three-ply ([90/0/90°]) perfect cylindrical panel subjected to sinusoidal load
q = qo sin(7n) sin(n{) at the top surface (o = n/3)

Quantity N L/h
45 108 1008 10008
W(rm, § ’5) 2 1.38497 1.42977 1.43571 1.43576
4 0.446222 0.457079 0.458145 0.458152
10 0.139359 0.143704 0.143993 0.143993
—a(ro, % %) 2 0.0233162 0.0366425 0.0346897 0.0346732
4 0.0177140 0.0179436 0.0177137 0.0177144
10 0.00931996 0.00925565 0.00993941 0.00994875
o1(ry,§ %) 2 0.128345 0.0952157 0.0872165 0.0871310
4 0.0471911 0.0330501 0.0293363 0.0292957
10 0.0198365 0.0135056 0.0114952 0.0114723
702(;'0,5,5) 2 3.32435 3.45058 3.46716 3.46730
4 1.71884 1.76674 1.77141 1.77144
10 0.958932 0.992630 0.994878 0.994885
ay(ry % %) 2 2.37537 2.45033 2.46290 2.46302
4 1.32896 1.36238 1.36699 1.36703
10 0.869806 0.894958 0.897194 0.897207
03(Fm, 0,0) 2 0.385510 0.392064 0.393510 0.393523
4 0.464429 0.474693 0.475720 0.475727
10 0.509392 0.524162 0.525111 0.525113
10EL 10 10 10
! / / /
W=——u, 0 =—=0, 0,=——=0 0y = ——T,9. 25
pohS*T TN T g2 T2 T g2t T T pg (23)

It is seen from Table 3 that, as expected, the present 3D solution for the perfect laminated panel is almost
identical to that obtained by Varadan and Bhaskar (1991), whose results are however not presented here for
brevity. We also found that Cheng et al. (2000) made two mistakes when quoting Varadan and Bhaskar
(1991)’s original data: (1) the values of the deflection should be those at the mediate surfaces, not the
bottom surfaces as claimed in Table 1 of that paper; and (2) the central deflection w' and the transverse
shear stress g5 at r = r, for S =4 should be 4.009 and 2.349, respectively.

Table 3 clearly shows that although the shell theory can give very good predictions for the moderately-
thick, perfectly-bonded laminates, its predicting error becomes much larger at the presence of weak
interface. For example, when S = 10, the relative errors ! of the central deflection predicted by shell theory
are —1.6%, 12.6%, 26.8%, and 40.0% for R = 0.0, 0.3, 0.6, and 0.9, respectively. In fact, even when S = 50,
the relative error still has a value of 6.3% for R = 0.9. Further, as shown in Table 3, since the shell theory
usually underestimates the transverse shear stress 7,9, one may have difficulty in evaluating the interfacial
shear strength. Thus, for a laminated panel with interfaces seriously weakened, the validity of shell theory
should be carefully cross-examined with available 3D exact solutions.

The distributions of stresses and displacements along the thickness direction are given in Fig. 2 for a
five-ply asymmetric laminated cylindrical panel with S = 4, « = /3 and L/h = 4S. The stacking sequence is

! Defined as: (shell-3D)/3D.
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Table 3

Comparison for a three-ply ([90/0/90°]) cylindrical panel with weak interfaces subjected to sinusoidal load p = —py sin(zn) (sin n{) at the

bottom surface (L/h =4S, o = n/4)*

Quantity S R=0.0 R=03 R=0.6 R=09

W (rms3,5) 4 4.00897 4.56004 5.01155 5.37336
(3.60671) (4.54355) (5.22412) (5.68617)

10 1.22329 1.38630 1.54034 1.68613
(1.20335) (1.56068) (1.95346) (2.36049)

50 0.54953 0.55683 0.56411 0.57135
(0.54862) (0.56474) (0.58443) (0.60760)

100 0.47154 0.47300 0.47445 0.47590
(0.47110) (0.47432) (0.47827) (0.48293)

1 (r0,%,%) 4 —-0.27009 —-0.28207 —-0.29131 —0.29858
(-0.12923) (=0.15659) (-0.17584) (-0.18821)

10 —-0.07910 —-0.82867 —-0.08639 —0.07248

(=0.05632) (=0.06436) (-0.07327) (-0.08248)

50 —0.02245 —-0.02234 —-0.02222 —-0.02211

(-0.02167) (-0.02139) (-0.02106) (=0.02067)

100 0.00183 0.00193 0.00203 0.00213
(0.00197) (0.00220) (0.00247) (0.00280)

o (rv,5,%) 4 0.12702 0.14119 0.15235 0.16133
(0.12126) (0.14641) (0.16369) (0.17444)

10 0.07392 0.08023 0.08618 0.09179
(0.07231) (0.08561) (0.10028) (0.11544)

50 0.07124 0.07180 0.07235 0.07290
(0.07097) (0.07215) (0.07360) (0.07531)

100 0.08384 0.08401 0.08417 0.08434

(0.08370) (0.08406) (0.08450) (0.08502)

a4 (r0,%,%) 4 -9.32297 —-10.36933 -11.21592 -11.91532
(-10.52806) (—12.94523) (—14.80410) (—16.14023)

10 —-5.22390 —-5.57376 —-5.90440 —6.85332

(-5.30760) (-6.04312) (—6.87232) (=7.74757)

50 —3.98646 —3.99998 —4.01345 —4.02687

(-3.98701) (—4.01326) (—4.04618) (—4.08560)

100 —-3.50650 —-3.50812 -3.50974 —-3.51135

(—3.50626) (=3.50900) (—3.51255) (-3.51690)

ay(rn,3,%) 4 6.54448 7.27688 7.86913 8.35815
(7.01022) (8.51118) (9.67634) (10.52132)

10 4.68271 4.97600 5.25316 5.51549
(4.69967) (5.30698) (5.99277) (6.71749)

50 3.93012 3.94335 3.95653 3.96966
(3.92646) (3.95217) (3.98441) (4.02301)

100 3.50674 3.50841 3.51008 3.51175
(3.50478) (3.50766) (3.51137) (3.51592)

04 (rm, 0,0) 4 2.34883 2.13149 1.96304 1.81160
(2.00375) (1.49511) (1.09511) (0.80258)

10 3.26357 3.17793 3.09703 3.02049
(3.24028) (3.06610) (2.86781) (2.65714)

50 3.49102 3.48478 3.47856 3.47236

(3.48937) (3.47683) (3.46121) (3.44259)

100 3.12660 3.12398 3.12136 3.11874

(3.12561) (3.12009) (3.11325) (3.10511)

#Data in parentheses were obtained by Cheng et al. (2000).
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Fig. 2. Distributions of normalized physical variables along the thickness direction: (@) u(r,2/2,L/2)Er/ (pur). (5) (. 0,L/ 2/
(poro), (€) u-(r,0t/2,0)Er/ (pore), (d) a,(r,0/2,L/2)/po, (€) Tr0(r,0,L/2)/po, () T,-(r,2/2,0)/po, (&) 6o(r;a/2,L/2)/po, (h) o-(r, /2,
L/2)/po, () e:(7,0,0)/po.

[90/0/0/90/0°] and the load is the same as that considered in Table 3. It is assumed that the first and third
interfaces are perfect, while the second and fourth ones (from bottom) are weakened with R® = 2R% = R.
For clarity purpose, a non-dimensional radial coordinate 2 = (r — ry)/(ry — 7o) is introduced in Fig. 2 such
that A =0 and A =1 correspond to the bottom and top surfaces, respectively.

It is clearly seen that the displacement uy is discontinuous across the second and fourth interfaces and the
displacement u, is discontinuous across the second interface, because of the weakness introduced locally
there (R # 0). The discontinuity of u. at the fourth interface is however, not obvious because the shear
stress 7,, at the fourth interface is much smaller than the one at the second interface in this example. In a
generally perfect laminate, the three stress components, oy, 7., and 7y, usually have discontinuities at the
interfaces, however, they are continuous across the third interface in the present example because the third
layer and fourth layer are the same. We also notice that for a cross-ply laminated cylindrical panel, since cg
of a particular ply does not depend on the fiber orientation, g, is continuous across all interfaces in a
perfect laminated panel, as shown in Fig. 2(i). When weak interfaces are present, the continuity of 74, will
depend on the two displacements uy and u,, which can be seen from the constitutive relations, Eq. (2). By
comparing Fig. 2(e) with Fig. 2(f), we find that the effect of weak interface is different on the shear stresses
7,9 and 1,.. In fact, 1,4 at the weak interfaces decreases with R, while t,. increases. Thus, if we want to
prevent the bonding shear failure using technique of weakening interfaces, exact evaluation should be made
a priori to select a proper degree of weakness.

Now we consider the free vibration problem. The lowest non-dimensional frequency parameter
@ = wh(L/h)*\/p/(ELS) is given in Table 4 for the three-ply laminated cylindrical panel that was
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Table 4
The lowest dimensionless frequency @ for a three-ply ([90/0/90°]) cylindrical panel with weak interfaces (L/h = 58, o = n/3)*
(m,n) S R=00 R=03 R=06 R=09

(L1 4 11.66616 10.87918 10.31621 9.89192
(11.99395) (10.46062) (9.51144) (8.90386)

10 12.86607 12.24169 11.71792 11.27108
(12.95592) (11.66571) (10.57431) (9.67627)

20 11.20476 10.98330 10.77682 10.58373
(11.23782) (10.76221) (10.26312) (9.76555)

50 8.19762 8.17022 8.14319 8.11654
(8.20638) (8.14615) (8.07443) (7.99254)

(1,2) 4 12.04638 11.29643 10.74769 10.33412
(12.38716) (10.89474) (9.97441) (9.38532)

10 13.46939 12.86727 12.36408 11.93629
(13.56426) (12.32296) (11.28327) (10.43676)

20 12.37615 12.17310 11.98442 11.80854
(12.41403) (11.97924) (11.52694) (11.08049)

50 11.49005 11.47005 11.45035 11.43094
(11.50035) (11.45682) (11.40519) (11.34654)

2,1 4 30.73004 29.10653 28.05967 27.32793
(34.63088) (32.53590) (31.71714) (31.43851)

10 39.32893 36.58271 34.54921 32.97619
(39.67459) (34.31803) (30.72844) (28.27173)

20 41.23324 39.18662 37.47011 36.00582
(41.30724) (37.13336) (33.59432) (30.67520)

50 32.68723 32.22254 31.77956 31.35668
(32.70070) (31.69756) (30.59182) (29.43239)

2,2) 4 30.85077 29.23539 28.19291 27.46339
(34.73297) (32.64673) (31.82869) (31.54784)

10 39.43239 36.69138 34.66231 33.09303
(39.78115) (34.43379) (30.85229) (28.40182)

20 41.35086 39.30621 37.59177 36.12960
(41.42976) (37.25946) (33.72556) (30.81249)

50 32.90136 32.43843 31.99722 31.57611
(32.91889) (31.91951) (30.81842) (29.66449)

#Data in parentheses were obtained by Cheng et al. (2000).

considered in Table 3, but with L/# = 55 and o« = 7/3. Comparison is also made against results obtained by
the extended third-order zigzag shell theory (Cheng et al., 2000).

Table 4 shows that the lowest frequency decreases with R, indicating that the weak interfaces result in
reduction of rigidity of the panel. This is consistent with the results of the bending problem in which the
deflection increases with R under same surface pressure level (Table 3). Again, although the shell theory in
Cheng et al. (2000) behaves well for the moderately thick shell, its accuracy degrades as R increases. For
example, the relative errors with respect to the current 3D solution are 0.70%, —4.71%, —9.76%, and
—14.15%, for R = 0.0, 0.3, 0.6 and 0.9, respectively when S = 10 and m = n = 1. It is also interesting to note
that while the shell theory often tends to overestimate the lowest natural frequency of a perfect panel, it
more often than less underestimates the frequency of a laminated panel with weak interfaces. Results shown
in Table 4 are for R = 0.3, 0.6 and 0.9, and the shell theory always gives an underestimated frequency except
for S =4 and (m,n) = (2,1) or (m,n) = (2,2).
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Table 5
Lowest natural frequency parameter »* of laminated cylindrical panels with weak interfaces (S =4, a =n/3, m=n=1)
Stacking sequence L/h R=0 R=03 R=0.6 R=09
[0/90°] 38 0.894755 0.886667 0.879385 0.872795
58 0.853011 0.845546 0.838840 0.832784
108 0.838351 0.831164 0.824712 0.818889
1008 0.834976 0.827911 0.821568 0.815843
5008 0.834952 0.827888 0.821546 0.815822
00 0.834951 0.827887 0.821545 0.815822
[0/90/0°] 38 0.668142 0.656171 0.645833 0.636776
58 0.591202 0.584350 0.578095 0.572360
108 0.565970 0.560281 0.555027 0.550160
1008 0.560931 0.555457 0.550395 0.545700
5008 0.560899 0.555427 0.550367 0.545673
00 0.560898 0.555426 0.550365 0.545672
[0/90/0/90°] 38 0.924195 0.850244 0.799007 0.761037
58 0.882528 0.808350 0.757251 0.719595
108 0.869644 0.795057 0.743728 0.705954
1008 0.867454 0.792751 0.741349 0.703531
5008 0.867444 0.792740 0.741337 0.703519
00 0.867444 0.792739 0.741337 0.703519
[(0/90),0°] 38 0.791885 0.723517 0.676358 0.641449
58 0.733878 0.667181 0.621635 0.588183
108 0.716674 0.649706 0.604083 0.570662
1008 0.713829 0.646741 0.601050 0.567595
5008 0.713816 0.646727 0.601035 0.567580
00 0.713815 0.646726 0.601035 0.567580

The cylindrical bending assumption for free vibration problem is investigated in Table 5, where the
lowest natural frequency parameter w* = wro\/p/Et for m = n =1 is given. The formulations for cylin-
drical bending problem, e.g. Eq. (21) are directly employed to calculate the results for L/h — co. All
interfaces in the laminated cylindrical panel are assumed identical, i.e. R = RV = R® = ... = R¥-D Tt can
be seen that the lowest frequency of the cylindrical panel converges rapidly to that of the panel in cylindrical
bending when L/h increases. Also important to note that the accuracy of the results based on the cylindrical
bending assumption is affected by the stacking sequence. This can be seen from the case of L/h = 58, where
the relative error of the frequency, when compared to that of cylindrical bending, is around 5% for the
layup [0/90/0°]; while it is only about 2% for the layup [0/90°]. In contrast to the static problem, the fre-
quency of the laminate in cylindrical bending is the lower limit, again resulting from constraint-free con-
dition at z =0, L.

Table 6 gives the first 10 lowest non-dimensional natural frequencies (w* = wrg\/p/Et) of the laminated
cylindrical panel that was considered in Fig. 2 for three groups of (m,n). It can be shown that the effect of
weak interfaces on the frequencies is quite different for different frequency order. For example, when
m = n = 1, the relative error of the lowest frequency for R = 0.9 is up to 13.62% (compared to R = 0.0),
while that of the second frequency is only 0.51%. In practice, if engineers want to know if the interfaces of a
laminated structure are weakened or how much the degree of weakness of interfaces is by using non-
destructive dynamic technology, this observation should be very important. In fact, one should select the
mode, whose frequency is most sensitive to the weakness of interfaces, to perform the evaluation of
practical structures.
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Table 6
Lowest 10 frequency parameters o* of a five-ply ([90/0/0/90/0°]) laminated cylindrical panel with weak interfaces (S =4, « = n/3 and
L/h =4S)

(m,n) Order R=00 R=03 R=06 R=09
(1,1) 1 0.82284 0.77708 0.74063 0.71079
2 323737 3.23189 3.22634 3.22071
3 7.13570 6.56476 6.12657 5.78278
4 7.89221 7.46391 7.07489 6.73682
5 9.16483 9.07649 9.02195 8.98411
6 12.13538 11.51811 10.80907 10.17484
7 12.52188 12.16021 11.96772 11.82246
8 13.79163 13.44340 13.25300 13.14420
9 18.61502 18.08920 17.30980 16.77760
10 19.15239 18.12282 17.68995 17.27979
2,1) 1 2.16713 2.04683 1.95961 1.89321
2 4.54656 4.53942 4.53209 4.52459
3 7.87119 7.35520 6.96643 6.66642
4 9.95547 9.36789 8.84303 8.41987
5 11.89417 11.50341 11.17338 10.61777
6 12.74625 11.99839 11.43959 11.27952
7 13.58080 13.34172 13.24994 13.20382
8 19.15603 18.03080 17.21865 16.62966
9 19.43145 18.39950 17.63478 17.11821
10 23.27820 22.96347 22.72936 22.42300
(1,2) 1 0.95072 0.90453 0.86764 0.83739
2 5.46950 5.41384 5.35589 5.29543
3 7.91592 7.50076 7.12120 6.78898
4 8.32288 7.76416 7.33994 7.01397
5 9.23426 9.13590 9.07668 9.03635
6 12.16421 11.91090 11.57153 11.14859
7 1333419 12.69939 12.24408 11.95084
8 13.81273 13.46958 13.27938 13.16959
9 18.63395 18.13145 17.68316 17.20243
10 19.57440 18.52798 17.77046 17.31957

6. Conclusions

In this paper, state-space formulations are established to investigate the static and dynamic behaviors of
simply-supported cross-ply laminated cylindrical panels with weak interfaces, which are modeled as general
linear spring-layers. Compared to the previous work on perfect laminated cylindrical panels, the only
additional element needs to be introduced is the interfacial transfer matrix, which can be easily integrated
into the global transfer matrix. Numerical comparison shows that the present analysis based on the layer-
wise model is of high accuracy compared to classic laminate theories. In fact, this method can give results of
an arbitrary precision simply by increasing the number of sub-layers. It is also found that, while the ex-
tended zigzag shell theory developed by Cheng et al. (2000) does work well for perfect laminated panels, it
becomes (much) less accurate for laminated cylindrical panel with weak interfaces, especially when the
weakness is significant.

It is also emphasized here that although the shell theory gives conservative predictions of deflections and
lowest natural frequencies (m = n = 1), as shown in Tables 3 and 4, respectively, the situation may become
serious for the health diagnosis of structures in service. For example, if we obtain the central deflection (w')
around 0.564 by experimental testing for S = 50, we may conclude that the panel has weak interfaces with
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R = 0.3 by comparing with the shell theory’s prediction (Table 3). However, from the 3D results, it actually
corresponds to R = 0.6, which is more dangerous. To avoid this, highly accurate analysis methods are

especially desired.

The cylindrical bending of the laminated panel is also considered in the paper. In particular, an exact
state-space analysis is derived in Appendix B for the static loading case, which serves a benchmark to
calibrate the LWM employed in the paper. Numerical investigation shows that the employment of
assumption of cylindrical bending of a practical panel also should be careful.
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Appendix A. Matrices N(r) and A(¢), and induced variables

The operator matrix N(r) is
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The three induced variables can be determined from the state variables by
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The non-dimensional coeflicient matrix A(¢) is
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where t, = mn/o, t, = nnrg/L, and Q = wryy/ pWM) /cf‘i) is the non-dimensional frequency.

Appendix B. Exact static analysis of cross-ply laminated cylindrical panel in cylindrical bending

For the static problem, Eq. (21) can be rewritten as

2
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After the following variable substitution (Chen and Ding, 2001)

r=riexp(¢)

where y, = In(r;/r4_1), Eq. (B.1) becomes
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If we take a solution in a similar form of Eq. (5), except that the variation with z is disregarded owing to
infinity condition along this dimension, the simply-supported condition at 0 = 0, (Ren, 1987) is then
automatically satisfied. We then can derive a state equation with constant coefficients, of which the exact
solution can be easily written out. The reader is referred to Chen and Ding (2001) for the detailed pro-

cedure.
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